The Oklahoma Mesonet: Why We Did It & Lessons Learned
(Its Value to the Citizens of Oklahoma)

Chris Fiebrich, Manager
The Oklahoma Mesonet

Oklahoma Climatological Survey
University of Oklahoma

June 15, 2007
The Purpose of This Presentation

• The purpose of this presentation is to reflect on “lessons learned” during the past 15-20 years in designing, implementing, maintaining, and operating the Oklahoma Mesonet.

• The focus will be on:
 • Overview of our network
 • Our good and not-so-good lessons learned
 • Our experience with soil moisture measurements
The Oklahoma Mesonet

- Commissioned in 1994
- Atmospheric measurements with 5-minute resolution
The Oklahoma Mesonet
Key Ingredients for Success

- Standardized hardware, siting and maintenance procedures at each site (Fig. 1)
- Reliable two-way communications with each remote site (Fig. 2). The near-zero recurring costs (due to a partnership with the Oklahoma Department of Public Safety) were the initial ingredients to foster development of the Mesonet.
- Aggressive data quality control and quality assurance procedures (QC/QA; Fig. 3; Shafer et al. 2000; Fiebrich and Crawford 2001; Fiebrich et al. 2005).
- Quality products, relevant to each sector of users, that are intuitive and operate on the user computers (Fig. 4).
- Strong educational outreach programs that support individual user groups with a variety of products (Fig. 5).
- Data that has a research quality, yet is provided in real time (< 5 minutes; Fig. 6).
The Oklahoma Mesonet: Standardized Installations (Fig. 1)
Cost of a Typical Site
~$21K

- 10 m tower, lightning protection, guy wires, fencing, and datalogger enclosure
- 2 solar panels and 3 batteries to power datalogger, communications, and heating of anemometer
- Datalogger, multiplexer, and logger serial interface
- VHF radio, modem, antenna and cables
- Air temperature (with radiation shield), relative humidity, pressure, soil temperatures (5 depths), solar radiation, rainfall (with alter shield), ultrasonic wind speed (10 m), wind sentry (2 m), and soil moisture (3 depths)

➤ http://www.mesonet.org/instruments
Additional Equipment

• 74 sites have net radiometers and skin temperature sensors
 ➢ Add ~$1800 per site

• 2 sites have 4-component net radiometers, 3-D sonic anemometers, and soil heat flux sensors
 ➢ Add ~$16K per site
The Initial, Key Ingredient: Reliable, No-Cost Communications (Fig. 2)
Communications Infrastructure Costs

• Remote Station
 • Modem, Radio, Antenna Cable, Antenna [~$1100]

• Base Station
 • UDS-10, Telnet Power Switch, Radio, Modem, Antenna Cable, Antenna, Router [~$1500]

• Repeater Station
 • Radio, Modem, Antenna Cable, Antenna [~$1100]
The Oklahoma Mesonet: Aggressive Data QC/QA Procedures (Fig. 3)
QA System: Calibration

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
QA System: Routine Maintenance
QA System: Automated QA

Filters
- Missing
- Range
- Qualparm
- Tech Visit
- Spatial
- Step
- Persistence
- Like Instrument
- Climate Range

Independent Algorithms
- Small Like
- Step to Normal
- Like Adjust Spatial
- Spatial Adjust Like
- Spatial Adjust Climate
- Like Adjust Climate
- Hot Soil Like Adjustment
- Hot Soil Spatial Adjustment

Adjustment Tests
- Soil Moisture Delta T
- Soil Moisture Step
- Soil Moisture TREF
- Soil Moisture Freeze
- Barometer Error
- Battery Check
- Theoretical Solar Radiation
- Heat Transfer
- Wind Speed Profile
- Net Radiation Rainfall
- IRT Obstruction

Sensor-specific Tests

Climatology-Hydrology Networks in WA
University of Washington
June 15, 2007
QA System: Automated QA

- Air Temperatures at 1.5 and 9.0 m
- Relative Humidity
- Pressure
- Soil Heat Flux
- Solar Radiation
- Rainfall
- Wind Speeds at 2, 4, 9 and 10 m
- Wind Gusts at 10 m
- Wind Direction at 10 m
- Soil Moisture at 5, 25, 60 and 75 cm
- Net Radiation
- 4-Component Radiation
- Sensible Heat Flux
- Skin Temperature
- Soil Temperatures at 5, 10, 15 and 30 cm

38 unique variables tested in real-time
43 unique variables tested daily
9 additional variables tested for flux datasets
QA System: Manual QA

Malfunctioning raingauge

Climatology-Hydrology Networks in WA
University of Washington
June 15, 2007
Manual QA (cont.)
QA System: Monitoring
Report Last Updated: 2002-06-25 06:20:53
Server: LoggerNetB
Client: detnull
Port:

<table>
<thead>
<tr>
<th>Station</th>
<th>Last Reported</th>
<th>Table</th>
<th>Latest Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAX</td>
<td>2002-06-25 06:19:33</td>
<td>ESM30C</td>
<td>2002-06-25 06:00:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NES05H</td>
<td>2002-06-25 06:15:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NES15B</td>
<td>2002-06-25 06:15:00</td>
</tr>
<tr>
<td>ALV2</td>
<td>2002-06-25 06:19:51</td>
<td>ESM30C</td>
<td>2002-06-25 06:00:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NES05H</td>
<td>2002-06-25 06:15:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NES15B</td>
<td>2002-06-25 06:15:00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUP05F1</td>
<td>2002-06-25 06:15:15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STI05F2</td>
<td>2002-06-25 06:15:15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUP05F3</td>
<td>2002-06-25 06:15:15</td>
</tr>
<tr>
<td>BEEX</td>
<td>2002-06-25 06:16:44</td>
<td>NES05H</td>
<td>2002-06-25 06:15:00</td>
</tr>
</tbody>
</table>

Traffic Analysis for July 31 - bridge - Microsoft Internet Explorer

Daily Graph (5 Minute Average)

- Max In: 454.0 B/s (6.5%)
- Average In: 200.0 B/s (3.6%)
- Current In: 171.0 B/s (2.4%)
- Max Out: 642.0 B/s (9.2%)
- Average Out: 292.0 B/s (4.2%)
- Current Out: 176.0 B/s (2.5%)

Weekly Graph (30 Minute Average)

- Days per Second
- Days per Hour
- Days per Week
QA System: Metadata

Spring Pass 2003

A number of problems with sensors were found during Spring Pass 2003. Below are examples of the times that the technician identified conditions at a station that may affect data quality.

1. Effects of insects on sensors

Cockroaches and spider webs were found covering IRT and TA15 sensors. Each sensor was cleaned and the data was investigated to determine if QA flags were necessary.

- JAYX IRT on 22 April 2003
- MACI TA15 on 08 April 2003
- RING IRT on 14 April 2003

2. Fire damage at sites in northern Oklahoma

In early spring in the northern part of the state, controlled burns of pastures begin. Sometimes, our Mesonet sites get in the way of the flames! The sensor data from the two sites below were flagged until the sentries were replaced.

<table>
<thead>
<tr>
<th>Station</th>
<th>Variable</th>
<th>Date Reported</th>
<th>Problem Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnsville</td>
<td>TS10</td>
<td>07-Oct-2005 16:01</td>
<td>Sensor was damaged by fire</td>
</tr>
<tr>
<td>Folsom</td>
<td>TS30</td>
<td>06-Oct-2005 11:05</td>
<td>Sensor was damaged by fire</td>
</tr>
<tr>
<td>May Ranch</td>
<td>TS05</td>
<td>23-Sep-2005 10:21</td>
<td>Sensor was damaged by fire</td>
</tr>
<tr>
<td>Vista</td>
<td>TA15</td>
<td>30-Sep-2005 15:26</td>
<td>Sensor was covered by insects</td>
</tr>
<tr>
<td>Washington</td>
<td>TS05</td>
<td>30-Sep-2005 15:52</td>
<td>Sensor was damaged by fire</td>
</tr>
<tr>
<td>Woodward</td>
<td>WS2M</td>
<td>10-Oct-2005 15:52</td>
<td>Sensor was damaged by fire</td>
</tr>
</tbody>
</table>
The Oklahoma Mesonet: Quality Products Relevant to User Groups (Fig. 4)
The Oklahoma Mesonet

Strong Educational Outreach Programs (Fig. 5)
Summary of HCN-Mesonet Comparisons

<table>
<thead>
<tr>
<th></th>
<th>>1°C</th>
<th>> 2°C</th>
<th>>3°C</th>
<th>>4°C</th>
<th>>5°C</th>
<th>>6°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goodwell</td>
<td>1167</td>
<td>367</td>
<td>107</td>
<td>60</td>
<td>38</td>
<td>15</td>
</tr>
<tr>
<td>Cherokee</td>
<td>821</td>
<td>215</td>
<td>76</td>
<td>34</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Claremore</td>
<td>904</td>
<td>379</td>
<td>53</td>
<td>17</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Erick</td>
<td>1034</td>
<td>203</td>
<td>14</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Stillwater</td>
<td>1125</td>
<td>398</td>
<td>78</td>
<td>38</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>Tahlequah</td>
<td>1130</td>
<td>388</td>
<td>83</td>
<td>32</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Altus</td>
<td>1128</td>
<td>443</td>
<td>122</td>
<td>48</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Ada</td>
<td>697</td>
<td>354</td>
<td>196</td>
<td>101</td>
<td>48</td>
<td>25</td>
</tr>
<tr>
<td>Antlers</td>
<td>1366</td>
<td>488</td>
<td>39</td>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>All Sites:</td>
<td>9372</td>
<td>3235</td>
<td>768</td>
<td>353</td>
<td>165</td>
<td>74</td>
</tr>
<tr>
<td>% of Data:</td>
<td>55.8%</td>
<td>19.3%</td>
<td>4.6%</td>
<td>2.1%</td>
<td>1.0%</td>
<td>0.4%</td>
</tr>
</tbody>
</table>
Daily Mean Temperatures at Goodwell, OK for 2005
(Data from ‘Co-located’ CRN, HCN & Mesonet Sites)

Figure 6

- Within +/- 1 C: 65.8%
- Within +/- 1 C: 99.4%
The Oklahoma Mesonet
Lessons Learned: Negatives

1. Instruments don’t always work “as advertised”
2. Cheapest is not always the same as least expensive
3. Funding becomes secure when the check is cashed
4. Red tape unravels very slowly
5. People who are used to “free” don’t expect ever to pay
6. It’s orders of magnitude EASIER to collect metadata upon installation of the network rather than try to reconstruct it after the fact
The Oklahoma Mesonet
Lessons Learned: Positives

1. Dedicated professionals can overcome institutional obstacles.
2. An informed and participatory clientele will ease the way.
3. Careful planning and adherence to standards pays off.
4. Committees can be made to work (reference item 1).
5. The most effective allies are those with a stake in your project.
The Oklahoma Mesonet
Other ‘Lessons Learned’

• Hardware has a limited shelf life - do not purchase until staff is ready to implement.

• Hire the best possible staff. We achieved this in Oklahoma by ‘growing our own’. This approach is far better than hiring off the street, and then, teaching them to care.

• People are a much more important investment than is technology. In 10 years, the initial technology will be worthless but the people will be invaluable if you have mentored them and expected them to be creative.
“We had a wildfire … along the Red River south of Grandfield. Using the Mesonet and your fire weather products, I was able to relay to the first fire truck that was en route to the scene how fast the fire should burn and what the winds, soil and air temperatures would be at the scene. Because the spread component was high, we dispatched 2 more trucks to the scene even before the first truck arrived. The 3 trucks had the fire out within 30 minutes, quite possibly saving property and lives.”

– Tommy Thornton, Emergency Management Director
“The Mesonet has proven to be one of the most valuable production and marketing tools available to Oklahoma producers.... Mesonet data will play an increasing role in pesticide and fertilizer applications, prescribed burning, confined animal operations, and irrigation scheduling, to name a few.”

– Mark Hodges, Exec. Director, Oklahoma Wheat Commission
“The OWRB depends upon the reliable and accurate real-time drought and water-resources information supplied through the Oklahoma Mesonet’s vast suite of products. In addition, OCS staff have voluntarily provided many custom weather monitoring products … greatly enhancing the state’s ability to monitor and respond to drought episodes. As a result, critical drought-related decisions can be made more quickly and more confidently.”

– Brian Vance, Oklahoma Water Resources Board
Experience with Soil Moisture

317 CSI-229L sensors deployed
Measures Matric Potential
(we convert to FWI which ranges from 0 to 1)
Experience with Soil Moisture

105 Stevens Hydraphobe sensors deployed
Measures Water Fraction by Volume
(which ranges from 0 to ~.4)
Sensor also measure soil temperature
and soil salinity
Soil Moisture

Both are painful to install and maintain!
The Keys to Our Success
(National Research Council 2001)

• The blue ribbon panel believed the success of the Oklahoma Mesonet’s was built upon five pillars:

• Users were involved from day one.
• Products were developed in direct partnership with users.
• Strong partnerships existed with mission agencies and with research elements.
• Information was accessible from the beginning.
• Education of users and potential users was an important element of the program.
Sonic Anemometer Visitors
Thank You...Any Questions?

Come visit Norman and let us show you our operation.

Climatology-Hydrology Networks in WA
University of Washington
June 15, 2007